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Abstract

A one-part curing system is generally applied to sealants, coatings and adhesives. Most of these sealants are moisture-curable. Cure spee
prediction is very important when we design or handle these materials. Kinetic models are based on the moving boundary problems of
mass transfer and moisture reaction. Pseudo-steady-state (PSS) models and unsteady-state (US) models are presented for a flat plate. Bo
models are expressed by three dimensionless parameters. Two boundary conditions and two conutitihresrafio of the equilibrium
water concentration of the two phases on the boundary face}, 1 andm # 1, were studied using the PSS and US. The US results
were completely consistent with those by another numerical method. Not only the semi-infinite but also the finite distance to cure was
studied. When the dimensionless curing tithis greater than 1, PSS is in good agreement with US under all these conditions. As most
of the sealantsh values are greater than 1, the PSS model is accurate enough for the prediction. Experimental results supported these
theories. The presented models apply not only to this one-part curing system, but also to similar phenomena such as the slow reaction of
the oxidation of metals in air or the degradation of a polymer by oxygen and UMradiation.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Mass transfer; Kinetics; Mathematical modeling; Moving boundary conditions; Pseudo-steady-state; Moisture curable sealant; One-part curing
system

1. Introduction to the elastic materials. It is very important to predict the
relationship between the curing time and cured depth under
Sealant, adhesives and coatings utilize two types of some circumstances, with respect to the handling and de-
systems, the one-part and the two-part systems. The formessign of these materials. These kinetic models are attributed
does not require any mixing of base pastes and the curingto the moving boundary problems of mass transfer and the
pastes, while the latter requires careful mixing of these reaction with moisture. These phenomena are similar to the
two parts. Thus, for the ease of handling, workers prefer a combustion of coal or the oxidation of metal in the air.
one-part. There are many types of one-part curing systems, The relationship between curing time and cured depth is
such as those activated by moisture, oxygen or UV radiation. studied on a flat plate with a certain thickness. Two models
Most one-part sealants are activated by moisture in the air,are presented. One is the pseudo-steady-state (PSS) model,
enabling easy handling, rapid curing and good stability in which is easy to calculate, and the other is the unsteady-state
the package. Typical one-part sealants are urethane, silicondUS) model.
and polysulfide sealants [1]. Sealants composed of liquid Wen [2] studied widely the PSS solution and US solution
prepolymers, fillers and plasticizer cure from the surface to of solid fluid reaction models. Ishida et al. [3] and Yoshida
the interior with time after they are extruded from the pack- and Kunni [4] compared the PSS model with the US model
age with a hand-gun. Moisture in the air easily penetrates for spherical particles. All these reactions occur instanta-
the cured sealants and reacts with functional terminals of neously on the moving boundary face. Here we study not
these prepolymers in the uncured zone. The cured sealanthe instantaneous reaction but the slow one, and present the
zone slowly moves from the surface to the interior. The PSS and US models in the one-part curing system. Under
prepolymer in the uncured sealant is activated by the mois-these conditions, the PSS and US models are compared for
ture, which is absorbed from the surface, diffuses through a flat plate with semi-infinite and finite thickness.
the cured zone to the uncured zone, and is polymerized Murray and Landis [5] proposed the solution of
one-dimensional heat-conduction problems involving melt-
E-mail address: tatsuramatsui@thiokol.toray.co.jp (T. Matsui). ing and freezing, using a numerical method. A one-part
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Nomenclature

Ci concentration of water in the cured sealant
on the surface in equilibrium with the partial
pressure of water in the air (kghn

C, concentration of water a whenm = 1.0
or Co, whenm # 1.0 (kg/nr)

Ci1 concentration of water in the cured
zone (kg/n)

Co concentration of water in the uncured
zone (kg/nd)

Cuiy concentration of water in the cured zone
atx; = X (kg/m®)

Cox concentration of water in the uncured zone
atxs = X (kg/m?)

D1 diffusion coefficient of water in the cured
zone (n? per day)

D, diffusion coefficient of water in the uncured
zone (nf per day)

erf(x) error function ofx (=)

erfck) 1—erf(x) (-)

k reaction rate constant (1 per day)

K total weight of water consumed for curing p¢
unit volume (kg/nd)

k1 reaction rate constant at the first
step (1 per day)

ko reaction rate constant at the second
step (1 per day)

L upper limit of X or x2 (m)

m C2(X)/C1(X) = C2¢/C1x (-)

N flux of water (kg/(n¥ day))

N1 flux of water in the cured zone (kg/@day))

N2 flux of water in the uncured zone
(kg/(m? day))

Q total flux of water from 0 to cured time for
curing at any uncured face (kgfin

r D2/Dy (-)

Rc rate of water consumption by the reaction
(kg/(n? day))

RH relative humidity (%)

S operator of Laplace transformation

t time (day)

T curing time (day)

X uncured distance- xo — X (m)

X1 distance from the surface in the cured
zone (m)

X2 distance from the surface in the uncured
zone (m)

X distance of the boundary face from the
surface or cured depth (m)

Greek letters

& dimensionless cured depth or distance

(=(X2)vk/D1) ()

—

) dimensionless upper limit distance
(=(L/2)vk/D1) (-)
n dimensionless distance

(=((L — X)/2)vk/D1) (-)

0 dimensionless curing time=KT) (-)
A dimensionless variable=(/v/4D1t) (-)

curing model is applied to this method. The results by
Murray’s method completely coincide with those by our US
model. The experimental results are compared with those
obtained from our models.

2. Moded

A schematic moisture concentration profile of the sealant
is shown in Fig. 1. The moisture concentration on the sealant
surface is in equilibrium with that in air. Moisture transfers
through the cured zone (diffusion zone), where moisture is
not consumed by the reaction but simply diffuses to the un-
cured zone (reaction zone) where moisture disappears due
to its reaction. The boundary face between the cured zone
and uncured zone moves with time from the surface into
the interior. On the boundary fac€;, in the cured zone
andCy, in the uncured zone are assumed to be in equilib-
rium instantaneouslym = C»,/C1,). The reaction rate is
assumed to be proportional to the moisture concentration in
the sealant. For easy calculation, we assume that the diffu-
sion coefficientD> is constant in the reaction zone and that
the concentration of water on the boundary zone changes
discontinuously fronCy, to Cy,.

Two moving boundary conditions (cases 1 and 2) of the
PSS and US models are studied. Each modelsrhas 1
andm # 1. First, the PSS models for cases 1 and 2 are pre-
sented because of simplicity of understanding and calcula-
tion. Next, the US models for cases 1 and 2 are presented.
A special value ofn = 1 is studied for both models. In the

Cured zone
(Diffusion zone)

> <
Moving Boundary Face

Ci

i
Cix Uncured zone

Atmosphere
1 ( Reaction zone )

—>
X» Cux+ G
.._.‘_T_\ ! 5 X2
<~ X
Sealant

Fig. 1. Schematic moisture profile in the sealant.
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next section, these models are studied by numerical calcu-The dimensionless equation (8) is thus obtained:
lations, and the US model is verified by another numerical

hod. ool ¥ Y (2 L
metho 9_2.0(@)(5 +mﬁ) (8)

2.1. PSS model Form = 1 in Eq. (8), Eq. (9) is obtained:

In the diffusion zone and the reaction zone, the stationary 0—20 (k_’) (52 4 ié) ©)

state holds good. The boundary face between them moves = ~~\ ¢; Jr

with time. From the stationary state in Fig. 1, the flux of

water in the cured zone (or diffusion zone) is expressed by 2.1.2. PSS moddl of case 2
D1(Ci — C1y) For the cond.ition of case 1, Eq.. (5) seems to be int.uitive.

= ¥ Q) A more theoretical boundary condition has to be considered.

We postulate that after the total flux from= 0 to T at any

In the uncured zone (or reaction zone), if water consump- uncured point or face has reached a specified value, its point

tion rate is proportional to the water concentration, Eq. (2) is or face changes from the uncured region to the cured region

described from the stationary state under semi-infinite con- and its specified value is constant wherever it is located.

N1

ditions: Total absorption water on this face is consumed by curing
d2c, reaction and its diffusion into the uncured zone. Its value is
DZW =kC ) constant to be cured at any point. This assumption leads to

. the following equation (Appendix A)
at boundary conditions = 0, C2 = C, andx = oo, C2 =

0.From Eqg. (2) and the B.C., the flux of water in the uncured ar

4 —_— —
zone on the boundary face is given by Cor Tk = Nolv=x dx (10)
dcz From Egs. (1) and (3) and,, = mCy,, C, (=Cy,) is
Ny=-Dy | —= = kD 3 ' x Loy T 2
2 2 < dx ) x=0 2C2x ®) obtained and given as
We assume thaXy in Eq. (1) is equal td\z in Eq. (3) and, Ci (11)

furthermore, ifCy, is in equilibrium withC,, and defined r = 1/m + (VkD2/D1)X

by €2 = mCy, then Eq. (4) is obtained: From Egs. (3), (10) and (11), Eqg. (12) is obtained:
Ci

N = 4
X /D1 + 1/m/kKD2 @) ( Ci/vkD2 +k,) dx
1/m/KDz + X/D1
2.1.1. PSSmodel of case 1 G
We postulate that the velocity of the moving boundary = —dT (12)
face, or curing speed, is proportional to the transfer rate X/ D1+ 1/mvKkD2
of water on the boundary face. That is, the proportional at initial conditionsT = 0, X = 0.
constantk’, is the water consumption for curing per unit Integration of Eq. (12) yields the following equation
volume: . 14 K/mG; ‘e K/Ci 2 w3
NdT = k' dX (5) N kD> 2Dy
whereT is the curing time an& the cured depth. Dimensionless equation of Eq. (13) is given by Eq. (14)
From Egs. (4) and (5N is eliminated, and we get / 1 C:
— 2 !
ox (e =) (vl &
d7 ~ \ ¥ ) \X/D1 + 1/m kD, © l . .
Form = 1, Eq. (15) is obtained:
at initial conditionsT =0, X = 0. Y 1 C,
Eg. (6) is integrated, yielding Eq. (7) of PSS 0=2 (E) {52 + 7 (1+ k—/’) 5} (15)
i r
K\ [ X? X
T=|=—||lz=7+—x= (7)
C; 2D1  m+/KD> 2.2. USmodel

A dimensionless parameter and variables are introduced into

Eq. (7) to obtain In the cured zone, there are no reaction as shown in Fig. 1.

In the cured zone
k aC1 9%Cq

D- X
=2 g=kT, == op i
"= D S=2\ D o~ tox?

(16)
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B.C x1=0, C1=C; If we assume that: = Co,/C1, = 1.0, then
Toox1=X,t=T, C1=Cy

0C1 dC2
Wen [1] analyzed an equation similar to Eq. (16). From Dy (3_)61) x =2 <8_x2> y (24)
Eq. (16), Eq. (17) is obtained by the introduction of dimen- o e
sionless variable. = x1/v/4Dxt: From Eq. (23), Eq. (25) is obtained:
Ci(xp) = Ci — (Ci — Cyy) erf(x1/24/D1t) (17) dax _ D2(8C2/0x2)xp=x — D1(3C1/9x1)xy=x (25)
erf(X/2/D1T) dr Ce(l/m —1)
In the uncured zone, the reaction and the diffusion of water From Eq. (17), Eq. (26) is obtained:
occur simultaneously, as shown in Fig. 1. If the reaction
rate is assumed to be the first-order of water concentration, 9C1 _ —(Ci = Cy) expl—(X?/4D1T)) (26)
Eq. (18) is expressed. Examples of the reaction scheme will axy |, _y N /7w D1T erf(X/2/D1T)

be described in Section 6.

In the uncured zone From Eq. (22), Eq. (27) is obtained:
dC> 3°C>
—2 = Dy—= — kG (18) dC2 —exp(—KT) k
ot 2 — =Cyp { ——— — .| —erfvkT 27
0x; iz lyx 2| VDT D2 @"
BC ‘2= Ca(x2) =0

xe=Xt=T, Cz=Co 221, USmodel of case 1

Laplace transformation of Eq. (18) is given by Eq. (19) We postulate.that the boundary face rate or the curing
speed is proportional to the water transfer rate on the bound-

d2C2(S) S k ary face under the following condition, as explained in
dxZ - (Fz + 1)_2) C2(5) (19) Section 2.1.1:

Co, N(x2 = X)dT = k' dXx (5a)
B.C. x2=o00,C2(S) =0, x2 =X, Ca2(S) = —(20)

§ From Egs. (5a) and (25)—(27), the following quadratic equa-
Co, is a function of onlyX(T) or an independent variable, tion in C, is obtained:
i.e., curing timeT, and does not depend arThe relationship

betweerX andT is defined by Eq. (5) in case 1 or by Eq. (10) [ €xp(—KT) /i 1\ 2 1
in case 2. KT +ertVkT k)= + 1/m -1
From Egs. (19) and (20), Eq. (21) is obtained: _x?2 _
s o o 2D seni
Ca(8) = —2X exp(—x2 — \/S_+k> (21) T/ KT erf(X/2:/DaT) r
S VD2 C; exp(—X?/4D1T)

xCy — = (28)
The inverse Laplace transformation of Eq. (21) [6] is de- (1/m — 1)/r/7KT erf(X/2y/D1T)

scribed by Eq. (22): The dimensionless equation of Eq. (28) is given by Eq. (29):

C k _
Ca(x2) = 72x |:EXI0:—,/ D—Z(XZ - X)} {exp( :) + erf~/§} (k—l/) c+ |:1/m—11
/7 _
X p L @H e
e 2 VH) +exp{\/ D—2<x2_x>} " {mﬁx/ﬂ%rf(é‘/\/@) Jxo
_ Ci exp(—£2/6)
X2 X — = 29

Form = 1, C, is expressed by Egs. (24), (26) and (27) and

Danckwerts’ moving boundary condition [7,8] of two phases
Cor =C1x (:Cx):

is expressed by Eq. (23):

39C 3C; ¢, = Ciexp(—X?/4DiT)
blog) . P2 ) expl—(X2/4D1T)} + D2/ D1
1 1\ dx {(VkerfV/KT + (1/v/7T) exp(—KT)}

4 Co, (n_1 _ ) T = 0 (23) VT erf(X/2,/D1T) (30)
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Eq. (30) is converted to the dimensionless equation (31) by The initial conditions of Eq. (36) & = 0 isé = 0. Eq. (36)

the introduction of dimensionless parameters. gives the curing speed of the US model for case 2and 1.
Cy exp(—52/6) _ .
Ci  exp(—£2/6) + </r{x/70 erfv/0 + exp—0)) 3. Numerical calculations
xerf(¢/+/0) (31) According to the above models, one-part curing systems

) ) can be examined using numerical calculations.
From Eqgs. (5a) and (27), Eqg. (32) is obtained:

3.1. Comparison between PSS and US models for case 1

dax N D2C exp(— kT) and the effect of parameters
L — erfvKT 2
dr k/ «/JTDZT er } (32)

First, the relationship between the cured depth and the
When Eq. (31) is substituted into Eqg. (32), dimensionless curing time is calculated using Eq. (9) in the PSS model and

equation (33) is obtained: using Eq. (33) in the US model fat = 1.
dg Jr exp(—£2/0){exp(—0) /76 + erf\/0) 33)
do  \2/k/C; ) (exp(—£2/0) + /r (/7O + erf/d + exp(—0) erf(& /v/0)}
The initial condition of Eq. (33) & = 0is§ = 0. Fig. 2 showst vs. 6 of the PSS and US models. The
Eq. (33) gives the curing speed of the US model for case values of¢ in both models are in good agreement whsen
1 andm = 1. is greater than 1.
2.2.2. USmode of case 2 3.1.1. Effect of parameter k'/C;
In this section, the US model of case 2 is studied. The effect of/C; is shown in Fig. 3. IK'/C; is increased,

From Egs. (10) and (25)—(27), the quadratic equation in d&/d or the curing speed is decreased.

C, is determined as follows:
3.1.2. Effect of parameter r

[ 1 {exp(—e) CerfE 4 exp(—£2/6) } Ir?e effgct ofr is Zh_own Iin Fllghjf I_fr is incr%asin(je, yge
— or the curing speed is only slightly increased wifeandr
Ym =11 vzt m/r/76 erf(/ Vo) are less than 1. This means tBatslightly affects the curing
exp(—6) 2 kK speed whem is less than 1.
+ erf\/ﬂ C [— P
Vo 1/m—1
_£2/9 i 3.1.3. Effect of parameter m .
X { CXp—5/0) + EXp9) + erfx/a} Fig. 5 compares of the PSS model’s results using Eq. (8)
m/ry/70 erf(€/v/0) vt and the US model’s results using Egs. (29) and (32). Both
C; exp(—£2/0) models are also in good agreement whes greater than 1.
C(1/m — D Jrv/m0 erf(£//0) The effect ofmin case 1 is shown in Fig. 6. The parameter

, 2 m affects¢ andé little but has a slight effect whem is less
Cik exp(—§/0) (34)  than 1and is less than 1.

W/m— Dr/rbertE/VE)
3.2. Comparison between PSS and US models in case 2
Form = 1, dX/dT is expressed by Egs. (10) and (27) and and effect of parameters

Cor =C1x (:Cx)-

First, the relationship between the cured depth and the
d_X _ ( D> > (exp( k'D K erf\/_T> (35) curing time is calculated using Eq. (15) for the PSS model
dar  \1+#k/C, m and using Eq. (36) for the US model for = 1. Fig. 7
showsé vs. 6 for the PSS and US models. The values of
When Eq. (31) is substituted in Eq. (35), dimensionless equa-§ in both models are in good agreement witeis greater

tion (36) is obtained: than 1. This relationship, shown in Fig. 7, is similar to that
for case 1 shown in Fig. 2.
de  r [exp(—0) 1
— = erfvé i | ————
d 2 { NET +ertVo 1+k/Cy
Jr {exp(—0) /70 + erf\/6)

_vr 36
2 [+ (K/CH{L+ Jrivmoerfo + exp—0)) erf(€/v/6) /exp(—£2/6)}] (39)
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Fig. 8. Comparison of cases 1 andi2 = 1).

105 © £(U.S.K/Ci=2.0,r=3.0) |

3.2.1. Comparison of cases 1 and 2 1| x & (Murray.k’ /Ci=2.0,r=3.0) | 50

Fig. 8 compares the US model in cases 1 and 2ifee ]
1. The curing speed for case 1 is slightly faster than that 15 3@%)
for case 2 under the same conditionsk1f> C; > Co, &
as shown in Fig. 1, the boundary condition for case 1 by — 1 %O
Eg. (5a) is almost the same as that for case 2 by Eq. (10), 0.1 o
and the two results are almost the same especially when w o"o
is greater than 1. 1 %o ©

0.01 g

3.2.2. Effect of parameter m é,xo

From Egs. (10) and (27), the US model of Eq. (37) or 0,001
dimensionless equation (38) is obtained: 0.00010.001 001 01 1 100
X N { D2Cy } 6 [-]
dT k/ + Cx k' + Cx Fig. 10. Comparison between US model and Murray’s method

KT) (k/C; =2.0,r =3.0,m =1 and case 1).
{ eXp(D L erfﬁ} 37)

e network) was programmed, in which the partial differential
ds  Jr 1 exp(—6) equation was converted to the difference equation. The re-
o -2 <1+ K/C ) { NET) + erff} (38) sults of this method were compared with those of the US

X 70 .
model equation (33) (case 1 and= 1). Both results are
The initial condition of Eq. (38) a# = 0is& = 0. shown in Fig. 10. They are completely coincident. Thus, the

The gﬁect ofmin case 2 by Eqs. (34) and (38) is shown ys models are mathematically adequate.
in Fig.
. The effect ofmon 6 andé¢ is small, but it has a slight
effect whenmis less than 1 and is less than 1. This result 4. |llustration of the computed results
is the same as that in case 1, as shown in Fig. 6.
The numerical results of the PSS and US models were
3.3. Comparison between US model and Murray’s method compared. 19 is greater than 1, the results of the PSS and
US models are in good agreement. Two boundary condition
In order to evaluate these US models, another numericalmodels ofm # 1 andm = 1 were presented. All these four
solution by Murray’'s method [5] was applied to one-part cases had similar results. The influencer éndm on the
curing conditions (case 1 amd = 1). From Egs. (5a), (16), US models were studied. Thra andr values of less than
(18) and (24), the algorithm of Murray’s method (fixed space 1 had a much greater influence than those wiitland r
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greater than 1 for cases 1 and 2. These results show that the 10000 ‘¢
rate-determining step does not depend on the conditions in -| ® ©(Urethane)
the uncured zone but on the conditions in the cured zone. (| x 6 (Polysulfide)
The slope ot and6d from the US model results are nearly 1000 | o 6(Silicone)
1/2 as plotted on log—log paper (Figs. 2-9). i
X k T 100
(%) o g )
5 [
X = 2K,/71(k'|')1/2, X o 2K(T)Y?/Dy 10
This means thaK is proportional to the square root of I
andD; and does not depend on the reaction rate constant 1l S
k. When@ is greater than 1, the slopes of lband log 1 10 91(0e0xp.) 100010000

from the US and PSS models are 1/2. However, when
is less than 1, the slope from the PSS models is almost  Fig. 11. Relationship between experimentaind calculated.
equal to 1, while the slope from the US models remains at
almost 1/2 a® decreases. Two boundary conditions were
studied. Case 2 is more accurate than case 1 theoreticallyd. Discussion
and phenomenally. However, the two results are almost the
same according to Fig. 8. Thus, it is accurate enough to Many researchers have tried to solve the moving bound-
consider mathematically case 1. ary problems of two phases where reactions occur instanta-
neously on the boundary face. This work solves the moving
] ) boundary problems of two phases where in one phase dif-
5. Comparison between experiments and models fusion occurs and in the other phase a slow reaction and
o diffusion occurs. One good example is a moisture-curable
At constant temperature and humidity, the cured depth 5ne-part sealant. One phase is the cured zone (diffusion re-
of the sealant was measured at specified tifhddrethane gion) or the elastic solid phase, and the other phase is the
sealant was measured at ZD and RH 100%. Polysul-  ncured zone (reaction region) or viscous fluid zone. There
fide sealant was measured at*2Dand RH 100 and 30%. 4y three types of representative moisture-curable one-part
Silicone sealant was measured at’@0and RH 30%. We  gjastic sealants: silicone, urethane and polysulfide sealants.
assumed that; is proportional to RH. 3 Most contain moisture-sensitive prepolymers, i.e., protective
CiD1 was measured by moisture permeability through the fnctional groups that are bonded to the terminals of their
cured sealant according to the JIS Z 0208. Samples of curedyrepolymers and that first react with the moisture absorbed
sealant were crushed and kept at constant temperature angom the atmosphere and are converted to active terminals.

humidity for enough time. These samples were titrated by These active terminals then combine with each other and are
Karl-Fisher's method, an@; was observed arid; was sep- polymerized to form the elastic rubber.

arated and calculated from the moisture permeabkitstind

k were measured by supposition between actual cured depttpyotective functional group of prepolymerH,0

and curing time. These parameters are shown in Table 1

[9]. Experimental data for urethane, silicone and polysulfide ~ — active terminals of prepolymer byproducts (39)

sealants [9] were compared with the PSS model equation (9)

ofm = 1,r =1 and case 1. The PSS models were accurate

enough becausg is more than 1 and it is not necessary to

consider the US models. Furthermore, Eq. (9) of case 1 is Eipolymerizationto solidelastic rubber

accurate enough compared with Eq. (15) of case 2. We con-

sidered that andm are 1 in this case. Fig. 11 compares ex- In the other type, when the latent catalyst is converted to the

periments and models. The results show good coincidence.active catalyst by moisture absorbed from the atmosphere,
the prepolymer in the sealant is polymerized by this active

active terminalg+-catalyst+ curing agents

Table 1 catalyst.
Parameters of sealants at“ZD
K D1 = Dy C K latent catalyst H,O
Urethane 12 0.7810°° 13.5 (RH = 100% 11 gactive catalyst prepolymer
Polysulfide 5.6 1.5510°° 4.6 (RH = 100% 5.4 . .
1.4 (RH = 30%) ~+active catalyst-curing agents
Silicone 16 13.&10°° 0.33 (RH = 30%) 643

£2>polymerization to solidelastic rubber (40)
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Fig. 12. Comparison between PSS and US for upper it 0.5 (case
1 andm =1).

If k1 < kp, the rate-determining step is the first step in
Eq. (39) or Eq. (40), and the rate of polymerization to
the solid (elastic rubber) is assumed to be proportional to
the water content or the first-order of water concentration.

The diffusion coefficient of water in the uncured zone
(viscous fluid) seems to be slightly larger than that in the
cured zone (elastic rubber), i.e.> 1, andC,, also seems to
be slightly larger thaC1, in the cured zone (elastic rubber),
i.e.,m> 1.

Hitherto models were calculated under the condition of
Cz = 0 atxp = oo. Usually, x2 is limited and assumed
to beL. Under these conditions, the results of the numer-
ical calculation (Appendix B) with Egs. (B.2), (B.3) and
(B.8)—(B.10) are shown in Fig. 12, where the upper limit
&0 is 0.5. Wherd is greaterthan 1, the PSS and US mod-

10 ¢ ]
gﬂ
L s g R+
i QQQ
0.1k
T T
w001 L
R T o £(D.P.S.S.),k /Ci=2.0,r=3.0,m=2)
0,001 - = x £(P.S.S.), k' /Ci=2.0,r=3.0,m=2)
. + £(D.P.S.S.)/&(P.S.S)
0.001 0.01 0.1 1 10 100

6 [-]

Fig. 13. Comparison between PSS with and without Danckwerts’ condition
(k/C;i=2,r =3,m =2 and case 1).
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els with the upper limit are also in good agreement. Of
course, a§ approaches the upper lingiy, or more tharg g,

the results of the US model in the semi-infinite condition

and those of the US and PSS models in the finite condition
diverge.

The experimental results and the PSS model results were
compared. The experimental and the PSS model results co-
incided experimentally and theoretically. The PSS models
of case 1 with and without Danckwerts’ condition equa-
tion (23) were solved (Appendix C). The two results are the
same, as shown in Fig. 18.(DPSS) and (PSS) mear§
of PSS with and without Dackwerts’ condition. Thus, it is
unnecessary to consider the PSS model with Danckwerts’
condition equation (23).

This paper studied the kinetics of the one-part curing sys-
tem. However, the kinetics of these phenomena of the slow
oxidation reaction of metals in air or the degradation of a
polymer by oxygen and UV oy-radiation can be similarly
analyzed from this method.

7. Conclusions

The curing speed of a moisture-curable one-part sealant
is attributed to the moving boundary problems of mass
transfer and the reaction. PSS and US models were studied.
These models were expressed by dimensionless equations
& andd with only three dimensionless parametarsk’/C;
andm. The PSS models, which are easy to calculate, and
US models with two boundary conditions and= 1 and
m # 1 were compared. All four cases had similar results.
When 6 is greater than 1, the PSS and US results were
in good agreement. The influence of the parameters were
evaluated. The effect ok/C; on the curing speed was
very significant, but the effects ah and r were small.
Values ofm andr of less than 1 had a slightly greater ef-
fect than those greater than 1. These results show that the
rate-determining step of the curing speed depends on the
cured zone’s condition but does not depend on the uncured
zone’s condition. The moisture-curable one-part sealant
usually cures ab = KT, which is grater than 1 because
k is greater than 1.0 per day afdis greater than 1 day.
Two boundary conditions were studied. Case 2 was more
accurate than case 1 on the basis of theoretical and physical
phenomena. The curing speed in case 2 was slightly slower
than in case 1. However, the results for both conditions
were almost the same, especially whewas greater than
1. Thus, case 1 is accurate enough to study this phenom-
ena. In designing these sealants, we can calculate or use
the PSS model of case 1 with sufficient accuracy. The PSS
model with the finite distance condition also agreed with
the US model with the finite distance condition, witewas
greater than 1. The numerical method by Murray was ap-
plied to this one-part curing system and its results coincided
with those by our US model. Thus, US models are adequate
mathematically.
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We studied the slow reaction system with moving bound- from the definition ofQ(X(T)):
ary conditions mathematically and experimentally. Exact so- do  90dT 90
lutions (US models) suggested that even the slow reaction— = — — + —
system with moving boundary conditions can be approxi- dx 9T dx X

mated by simple PSS solutions (PSS models) in the limited _ N2|x2=xd—T /T N2 dr =0,
condition wheref is greater than 1. Experimental results dx 0 0x2|y,—x
supported these models. T 3N, dr
These presented models can also be applied to the kinetics/ B2 |y dt = —Nz(X)d—X (A7)
)=

of similar phenomena such as slow oxidation reactions of 0
metals in air or the degradation of a polymer by oxygen and From Egs. (A.3)—(A.5) and (A.7), Eq. (10) is expressed.
UV or y-radiation.

Appendix B. Finite distance condition

Acknowledgements
First, we consider PSS models of not semi-infinite but
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(Fukui University of Technology) for discussions on this ~ FromEq. (2) and the following B.C., Eq. (B.1) is obtained:
research work. AtB.C.x=0,Co=C,andx = L,dCy/dx =0,

d
N =—-D <%> BV KD2C2y (B.1)

x=0
Here, 8 is defined by Eq. (B.2):

_ expl(L — X)vk/D2} — exp{—(L — X)Vk/D2}

Appendix A. Boundary condition for case 2

Eq. (A.1) is obtained from the definition &f,:

. 20 = exp{(L — x)/k/D2} + exp{—(L — X)/k/D>2)}
T =D (A1) _1-ex-@4/VDE—§) 62)
2 1+ exp(—(4//r) (G0 — £)}
From Eqg. (A.1), Eq. (A.2) is given in the uncured zone: The dimensionless PSS equation in the finite condition of
X case 1 is expressed by Eq. (B.3):
aC a°C dN.
r=Da— —kCo= "~ —Re (A2) 9 _ 1 (B3)
! 05 *2 o 20k'/Ci2E + (1/BYr))
Eqg. (A.2) is integrated from O to the curing tinTe BC. 6=0£§=0
, If 8 =1, Eq. (B.3) coincides with Eq. (9) by integration.
/ IC2 " Next, the US model of the finite conditidnof case 1 is
0 0f |pex studied.
T 3N, T From Eg. (19) and B.C. af; = X, C2(S) = C,/S and
= —/ e dr —/ Relxy=x dt (A.3) x2 = L, dC2(S)/dx2 = 0, Eq. (B.4) is givenC, depends
0 X2 lg=x 0 only onXandT and does not depend orThus, the Laplace
T 5c transformation of on C, is C,/S.
/ =2 dr = Cp —0=C (A.4)
0 0t |,y * CZ(S)=<&> [ exp{—+/(S +k)/Da(x2 — X)}
, S )1+ exp—2J/(S+k)/Da(L — X)}
/ Reluyex df = K/ (A5) L O/ T/ Dalz = X)) } ©.4)
0 1+ exp{2./(S+k)/Da(L — X)}

We postulate that, after the total flux from= 0 to T at Eqg. (B.4) is differentiated by, andx; = X is introduced.
any uncured face has reached the specified value, its face dCH(S) ~ < c. )
xo=X S

changes from the uncured region to the cured region and
its specified value is constant wherever this face is located. dxz
Eq. (A.6) is expressed from this definition: { V(S +k)/Ds
T 1+ exp(—24/(S +k)/D2(L — X))
(T (X)) = fo N2|x,=x dt (A.6) VS +Kk) /Dy }

1+ exp2/S T+ k)/Da(L — X))
Q(T(X)) is differentiated byX and its derivative is zero (B.5)
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Eqg. (B.5) is expanded by the Taylor's series:

dCo(S)
dxo

xo=X

Cy |S+k [ & ; | S+k
=5V Dy {’; ((—1) exp(—Zn D—Z(L—X))>
—(—1)" exp (—Z(n +1) /SD——H((L — X)) } (B.6)
2

Dy dCa(S)

N (§) = — e

x2=X

NG») JS Tk
- —Tzcx«/s &+ 2y/D2Cs

xexp(

> o=
n=1

—2n(L — X)
— VS —l—k)
NI

R = /r exp(— 9)2( 1)"{2exp<

e
e (3) {3 )
xerfc(% - \/§> - exp(—“'—\/i7 9)
x erfc (j% + \/§>}

Appendix C. PSS models with Danckwerts conditions

(7

(B.10)

From Egs. (3) and (5), Eq. (C.1) is obtained:

dX_ kD2 c
ar — \ « 2

(C.1)

Dimensionless equation (C.1) is given by Eq. (C.2):

o (2)(%)

(C.2)

The inverse Laplace transformation of the above equation is g, Egs. (1), (3), (23) and (C.1), Eq. (C.3) is obtained:

expressed by Eq. (B.7):

Na(x = X) =

1
2—
(7‘[9)1/2

Cy/ Dok {erfx/§+ (\/%) exp(—e)}
Cx\/ngZ(—l)" {
n=1
4n2n2 4nn
ol )22
2nn 4ny
xerfc(ﬁ — \/5) - exp(\/7Jr 9)

2nn
x erfc( — + V6 }
(«/r@

(B.7)

In Eqg. (B.7),n is defined by((L — X)/2),/k/0;.

From Egs. (5a), (26) and (B.7), fir&,/C; is obtained
and the dimensionless equation of/db is expressed by
Egs. (B.8)—(B.10):

dn (1= Cy/Ci)expi—(Eo — m?/6)
o 2k'/CivmB erf(go — n)/VO

(B.8)

Cr _ exp(—(§o — )?/6)
Ci expl—(50 — m?/6} + Vri(erfVO)V/mb + exp(—6))
xerf(6{(&o — n)/vV0} + R (B.9)

1 Co\?> (D C
VK2 (= —1) (Z&) + (= + ViD, ) (=&
m k' mX k'
D1 9 —0
x )\ ¥
From Eq. (C.3), C2,/K) is calculated and its value is intro-

duced in Eqg. (C.2). Eq. (C.2) is the curing speed of the PSS
model with Danckwerts’ condition.

(C.3)

References

[1] J.R. Panek, J.P. Cook, Construction Sealants and Adhesives, Wiley,
New York, 1991.

[2] C.Y. Wen, Noncatalytic solid reactions models, Ind. Eng. Chem. 60 (9)
(1968) 34-54.

[3] M. Ishida, K. Yoshino, T. Shirai, The applicability of the
pseudo-steady-state approximation to moving boundary problems for
spheres, J. Chem. Eng. Jpn. 3 (1) (1970) 49-54.

[4] K. Yoshida, D. Kunni, Application of collocation technique for moving
boundary problems in solid—gas reactions, J. Chem. Eng. Jpn. 8 (5)
(1975) 417-419.

[5] W.D. Murray, F. Landis, Numerical and machine solutions of transient
heat-conduction problems involving melting or freezing: Part I, J.
Heat Transfer ASME Trans. 81C (1959) 106-112.

[6] H.S. Carslow, J.C. Jaeger, Conduction of Heat in Solids, Clarendon
Press, Oxford, 1973, pp. 134-135.

[7]1 3. Crank, The Mathematics of Diffusion, Oxford University Press,
Oxford, 1995, pp. 286-337.

[8] P.V. Danckwerts, Trans. Faraday Soc. 46 (1950) 701-712.

[9] T. Matsui, H. Kojima, M. Yabu, The analysis of curing kinetics of
sealants, J. Soc. Chem. Eng. Jpn. 25 (1) (1999) 117-123.



	Kinetic model of one-part curing system with moving boundary conditions
	Introduction
	Model
	PSS model
	PSS model of case 1
	PSS model of case 2

	US model
	US model of case 1
	US model of case 2


	Numerical calculations
	Comparison between PSS and US models for case 1 and the effect of parameters
	Effect of parameter k´/Ci
	Effect of parameter r
	Effect of parameter m

	Comparison between PSS and US models in case 2 and effect of parameters
	Comparison of cases 1 and 2
	Effect of parameter m

	Comparison between US model and Murray's method

	Illustration of the computed results
	Comparison between experiments and models
	Discussion
	Conclusions
	Acknowledgements
	Boundary condition for case 2
	Finite distance condition
	PSS models with Danckwerts' conditions
	References


