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Abstract

A one-part curing system is generally applied to sealants, coatings and adhesives. Most of these sealants are moisture-curable. Cure speed
prediction is very important when we design or handle these materials. Kinetic models are based on the moving boundary problems of
mass transfer and moisture reaction. Pseudo-steady-state (PSS) models and unsteady-state (US) models are presented for a flat plate. Both
models are expressed by three dimensionless parameters. Two boundary conditions and two conditions ofm (the ratio of the equilibrium
water concentration of the two phases on the boundary face),m = 1 andm �= 1, were studied using the PSS and US. The US results
were completely consistent with those by another numerical method. Not only the semi-infinite but also the finite distance to cure was
studied. When the dimensionless curing timeθ is greater than 1, PSS is in good agreement with US under all these conditions. As most
of the sealants’θ values are greater than 1, the PSS model is accurate enough for the prediction. Experimental results supported these
theories. The presented models apply not only to this one-part curing system, but also to similar phenomena such as the slow reaction of
the oxidation of metals in air or the degradation of a polymer by oxygen and UV or�-radiation.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Sealant, adhesives and coatings utilize two types of
systems, the one-part and the two-part systems. The former
does not require any mixing of base pastes and the curing
pastes, while the latter requires careful mixing of these
two parts. Thus, for the ease of handling, workers prefer a
one-part. There are many types of one-part curing systems,
such as those activated by moisture, oxygen or UV radiation.
Most one-part sealants are activated by moisture in the air,
enabling easy handling, rapid curing and good stability in
the package. Typical one-part sealants are urethane, silicone
and polysulfide sealants [1]. Sealants composed of liquid
prepolymers, fillers and plasticizer cure from the surface to
the interior with time after they are extruded from the pack-
age with a hand-gun. Moisture in the air easily penetrates
the cured sealants and reacts with functional terminals of
these prepolymers in the uncured zone. The cured sealant
zone slowly moves from the surface to the interior. The
prepolymer in the uncured sealant is activated by the mois-
ture, which is absorbed from the surface, diffuses through
the cured zone to the uncured zone, and is polymerized
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to the elastic materials. It is very important to predict the
relationship between the curing time and cured depth under
some circumstances, with respect to the handling and de-
sign of these materials. These kinetic models are attributed
to the moving boundary problems of mass transfer and the
reaction with moisture. These phenomena are similar to the
combustion of coal or the oxidation of metal in the air.

The relationship between curing time and cured depth is
studied on a flat plate with a certain thickness. Two models
are presented. One is the pseudo-steady-state (PSS) model,
which is easy to calculate, and the other is the unsteady-state
(US) model.

Wen [2] studied widely the PSS solution and US solution
of solid fluid reaction models. Ishida et al. [3] and Yoshida
and Kunni [4] compared the PSS model with the US model
for spherical particles. All these reactions occur instanta-
neously on the moving boundary face. Here we study not
the instantaneous reaction but the slow one, and present the
PSS and US models in the one-part curing system. Under
these conditions, the PSS and US models are compared for
a flat plate with semi-infinite and finite thickness.

Murray and Landis [5] proposed the solution of
one-dimensional heat-conduction problems involving melt-
ing and freezing, using a numerical method. A one-part
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Nomenclature

Ci concentration of water in the cured sealant
on the surface in equilibrium with the partial
pressure of water in the air (kg/m3)

Cx concentration of water atX whenm = 1.0
or C2x whenm �= 1.0 (kg/m3)

C1 concentration of water in the cured
zone (kg/m3)

C2 concentration of water in the uncured
zone (kg/m3)

C1x concentration of water in the cured zone
at x1 = X (kg/m3)

C2x concentration of water in the uncured zone
at x2 = X (kg/m3)

D1 diffusion coefficient of water in the cured
zone (m2 per day)

D2 diffusion coefficient of water in the uncured
zone (m2 per day)

erf(x) error function ofx (–)
erfc(x) 1 − erf(x) (–)
k reaction rate constant (1 per day)
k′ total weight of water consumed for curing per

unit volume (kg/m3)
k1 reaction rate constant at the first

step (1 per day)
k2 reaction rate constant at the second

step (1 per day)
L upper limit ofX or x2 (m)
m C2(X)/C1(X) = C2x/C1x (–)
N flux of water (kg/(m2 day))
N1 flux of water in the cured zone (kg/(m2 day))
N2 flux of water in the uncured zone

(kg/(m2 day))
Q total flux of water from 0 to cured timeT for

curing at any uncured face (kg/m2)
r D2/D1 (–)
Rc rate of water consumption by the reaction

(kg/(m2 day))
RH relative humidity (%)
S operator of Laplace transformation
t time (day)
T curing time (day)
x uncured distance= x2 − X (m)
x1 distance from the surface in the cured

zone (m)
x2 distance from the surface in the uncured

zone (m)
X distance of the boundary face from the

surface or cured depth (m)

Greek letters
ξ dimensionless cured depth or distance

(=(X/2)
√

k/D1) (–)

ξ0 dimensionless upper limit distance
(=(L/2)

√
k/D1) (–)

η dimensionless distance
(=((L − X)/2)

√
k/D1) (–)

θ dimensionless curing time (=kT) (–)
λ dimensionless variable (=x1/

√
4D1t) (–)

curing model is applied to this method. The results by
Murray’s method completely coincide with those by our US
model. The experimental results are compared with those
obtained from our models.

2. Model

A schematic moisture concentration profile of the sealant
is shown in Fig. 1. The moisture concentration on the sealant
surface is in equilibrium with that in air. Moisture transfers
through the cured zone (diffusion zone), where moisture is
not consumed by the reaction but simply diffuses to the un-
cured zone (reaction zone) where moisture disappears due
to its reaction. The boundary face between the cured zone
and uncured zone moves with time from the surface into
the interior. On the boundary face,C1x in the cured zone
andC2x in the uncured zone are assumed to be in equilib-
rium instantaneously(m = C2x/C1x). The reaction rate is
assumed to be proportional to the moisture concentration in
the sealant. For easy calculation, we assume that the diffu-
sion coefficientD2 is constant in the reaction zone and that
the concentration of water on the boundary zone changes
discontinuously fromC1x to C2x .

Two moving boundary conditions (cases 1 and 2) of the
PSS and US models are studied. Each models hasm = 1
andm �= 1. First, the PSS models for cases 1 and 2 are pre-
sented because of simplicity of understanding and calcula-
tion. Next, the US models for cases 1 and 2 are presented.
A special value ofm = 1 is studied for both models. In the

Fig. 1. Schematic moisture profile in the sealant.



T. Matsui / Chemical Engineering Journal 89 (2002) 143–153 145

next section, these models are studied by numerical calcu-
lations, and the US model is verified by another numerical
method.

2.1. PSS model

In the diffusion zone and the reaction zone, the stationary
state holds good. The boundary face between them moves
with time. From the stationary state in Fig. 1, the flux of
water in the cured zone (or diffusion zone) is expressed by

N1 = D1(Ci − C1x)

X
(1)

In the uncured zone (or reaction zone), if water consump-
tion rate is proportional to the water concentration, Eq. (2) is
described from the stationary state under semi-infinite con-
ditions:

D2
d2C2

dx2
= kC2 (2)

at boundary conditionsx = 0, C2 = Cx andx = ∞, C2 =
0.From Eq. (2) and the B.C., the flux of water in the uncured
zone on the boundary face is given by

N2 = −D2

(
dC2

dx

)∣∣∣∣
x=0

=
√

kD2C2x (3)

We assume thatN1 in Eq. (1) is equal toN2 in Eq. (3) and,
furthermore, ifC2x is in equilibrium withC1x and defined
by C2x = mC1x , then Eq. (4) is obtained:

N = Ci

X/D1 + 1/m
√

kD2
(4)

2.1.1. PSS model of case 1
We postulate that the velocity of the moving boundary

face, or curing speed, is proportional to the transfer rate
of water on the boundary face. That is, the proportional
constant,k′, is the water consumption for curing per unit
volume:

N dT = k′ dX (5)

whereT is the curing time andX the cured depth.
From Eqs. (4) and (5),N is eliminated, and we get

dX

dT
=
(

Ci

k′

)(
1

X/D1 + 1/m
√

kD2

)
(6)

at initial conditionsT = 0, X = 0.
Eq. (6) is integrated, yielding Eq. (7) of PSS

T =
(

k′

Ci

)(
X2

2D1
+ X

m
√

kD2

)
(7)

A dimensionless parameter and variables are introduced into
Eq. (7) to obtain

r = D2

D1
, θ = kT, ξ = x

2

√
k

D1

The dimensionless equation (8) is thus obtained:

θ = 2.0

(
k′

Ci

)(
ξ2 + 1

m
√

r
ξ

)
(8)

For m = 1 in Eq. (8), Eq. (9) is obtained:

θ = 2.0

(
k′

Ci

)(
ξ2 + 1√

r
ξ

)
(9)

2.1.2. PSS model of case 2
For the condition of case 1, Eq. (5) seems to be intuitive.

A more theoretical boundary condition has to be considered.
We postulate that after the total flux fromt = 0 to T at any
uncured point or face has reached a specified value, its point
or face changes from the uncured region to the cured region
and its specified value is constant wherever it is located.
Total absorption water on this face is consumed by curing
reaction and its diffusion into the uncured zone. Its value is
constant to be cured at any point. This assumption leads to
the following equation (Appendix A)

C2x + k′ = N2|x2=X

dT

dX
(10)

From Eqs. (1) and (3) andC2x = mC1x , Cx (=C2x) is
obtained and given as

Cx = Ci

1/m + (
√

kD2/D1)X
(11)

From Eqs. (3), (10) and (11), Eq. (12) is obtained:(
Ci/

√
kD2

1/m
√

kD2 + X/D1
+ k′

)
dX

= Ci

X/D1 + 1/m
√

kD2
dT (12)

at initial conditionsT = 0, X = 0.
Integration of Eq. (12) yields the following equation

T =
(

1 + k′/mCi√
kD2

)
X +

(
k′/Ci

2D1

)
X2 (13)

Dimensionless equation of Eq. (13) is given by Eq. (14)

θ = 2

(
k′

Ci

){
ξ2 + 1

m
√

r

(
1 + Ci

k′

)
ξ

}
(14)

For m = 1, Eq. (15) is obtained:

θ = 2

(
k′

Ci

){
ξ2 + 1√

r

(
1 + Ci

k′

)
ξ

}
(15)

2.2. US model

In the cured zone, there are no reaction as shown in Fig. 1.
In the cured zone

∂C1

∂t
= D1

∂2C1

∂X2
1

(16)
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B.C.
x1 = 0, C1 = Ci

x1 = X, t = T , C1 = C1x

Wen [1] analyzed an equation similar to Eq. (16). From
Eq. (16), Eq. (17) is obtained by the introduction of dimen-
sionless variableλ = x1/

√
4D1t :

C1(x1) = Ci − (Ci − C1x) erf(x1/2
√

D1t)

erf(X/2
√

D1T )
(17)

In the uncured zone, the reaction and the diffusion of water
occur simultaneously, as shown in Fig. 1. If the reaction
rate is assumed to be the first-order of water concentration,
Eq. (18) is expressed. Examples of the reaction scheme will
be described in Section 6.

In the uncured zone

∂C2

∂t
= D2

∂2C2

∂x2
2

− kC2 (18)

B.C.
x2 = ∞, C2(x2) = 0
x2 = X, t = T , C2 = C2x

Laplace transformation of Eq. (18) is given by Eq. (19)

d2C2(S)

dx2
2

=
(

S

D2
+ k

D2

)
C2(S) (19)

B.C. x2 = ∞, C2(S) = 0, x2 = X, C2(S) = C2x

S
(20)

C2x is a function of onlyX(T) or an independent variable,
i.e., curing timeT, and does not depend ont. The relationship
betweenX andT is defined by Eq. (5) in case 1 or by Eq. (10)
in case 2.

From Eqs. (19) and (20), Eq. (21) is obtained:

C2(S) = C2X

S
exp

(
−x2 − X√

D2

√
S + k

)
(21)

The inverse Laplace transformation of Eq. (21) [6] is de-
scribed by Eq. (22):

C2(x2) = C2x

2

[
exp

{
−
√

k

D2
(x2 − X)

}

× erfc

(
x2−X

2
√

D2t
−

√
kt

)
+exp

{√
k

D2
(x2−X)

}

× erfc

(
x2−X

2
√

D2t
+

√
kt

)]
(22)

Danckwerts’ moving boundary condition [7,8] of two phases
is expressed by Eq. (23):

D1

(
∂C1

∂x1

)
x1=X

− D2

(
∂C2

∂x2

)
x2=X

+ C2x

(
1

m
− 1

)
dX

dT
= 0 (23)

If we assume thatm = C2x/C1x = 1.0, then

D1

(
∂C1

∂x1

)
x1=X

= D2

(
∂C2

∂x2

)
x2=X

(24)

From Eq. (23), Eq. (25) is obtained:

dX

dT
= D2(∂C2/∂x2)x2=X − D1(∂C1/∂x1)x2=X

Cx(1/m − 1)
(25)

From Eq. (17), Eq. (26) is obtained:

∂C1

∂x1

∣∣∣∣
x1=X

= −(Ci − C1x) exp{−(X2/4D1T )}√
πD1T erf(X/2

√
D1T )

(26)

From Eq. (22), Eq. (27) is obtained:

∂C2

∂x2

∣∣∣∣
x2=X

= C2x

{
−exp(−kT)√

πD2T
−
√

k

D2
erf

√
kT

}
(27)

2.2.1. US model of case 1
We postulate that the boundary face rate or the curing

speed is proportional to the water transfer rate on the bound-
ary face under the following condition, as explained in
Section 2.1.1:

N(x2 = X) dT = k′ dX (5a)

From Eqs. (5a) and (25)–(27), the following quadratic equa-
tion in Cx is obtained:{

exp(−kT)√
πkT

+ erf
√

kT

}(
1

k′

)
C2

x + 1

1/m − 1

×
{

exp(−X2)

m
√

r
√

πkT erf(X/2
√

D1T )
+ exp(−kT)√

πkT
+ erf

√
kT

}

×Cx − Ci exp(−X2/4D1T )

(1/m − 1)
√

r
√

πkT erf(X/2
√

D1T )
= 0 (28)

The dimensionless equation of Eq. (28) is given by Eq. (29):{
exp(−θ)√

πθ
+ erf

√
θ

}(
1

k′

)
C2

x +
[

1

1/m − 1

×
{

exp(−ξ2/θ)

m
√

r
√

πθ erf(ξ/
√

θ)
+ exp(−θ)√

πθ
+ erf

√
θ

}]
Cx

− Ci exp(−ξ2/θ)

(1/m − 1)
√

r
√

πθ erf(ξ/
√

θ)
= 0 (29)

For m = 1, Cx is expressed by Eqs. (24), (26) and (27) and
C2x = C1x (=Cx):

Cx = Ci exp(−X2/4D1T )

exp{−(X2/4D1T )} + √
D2/D1

{
√

k erf
√

kT + (1/
√

πT ) exp(−kT)}√
πT erf(X/2

√
D1T ) (30)



T. Matsui / Chemical Engineering Journal 89 (2002) 143–153 147

Eq. (30) is converted to the dimensionless equation (31) by
the introduction of dimensionless parameters.

Cx

Ci

= exp(−ξ2/θ)

exp(−ξ2/θ) + √
r{√πθ erf

√
θ + exp(−θ)}

×erf(ξ/
√

θ) (31)

From Eqs. (5a) and (27), Eq. (32) is obtained:

dX

dT
= N

k′ =
(

D2Cx

k′

){
exp(−kT)√

πD2T
+
√

k

D2
erf

√
kT

}
(32)

When Eq. (31) is substituted into Eq. (32), dimensionless
equation (33) is obtained:

dξ

dθ
=
( √

r

2
√

k′/Ci

)
exp(−ξ2/θ){exp(−θ)/

√
πθ + erf

√
θ}

{exp(−ξ2/θ) + √
r(

√
πθ + erf

√
θ + exp(−θ) erf(ξ/

√
θ)} (33)

The initial condition of Eq. (33) atθ = 0 is ξ = 0.
Eq. (33) gives the curing speed of the US model for case

1 andm = 1.

2.2.2. US model of case 2
In this section, the US model of case 2 is studied.
From Eqs. (10) and (25)–(27), the quadratic equation in

Cx is determined as follows:

[
1

1/m − 1

{
exp(−θ)√

πθ
+ erf

√
θ + exp(−ξ2/θ)

m
√

r
√

πθ erf(ξ/
√

θ)

}

+exp(−θ)√
πθ

+ erf
√

θ

]
C2

x +
[

k′

1/m − 1

×
{

exp(−ξ2/θ)

m
√

r
√

πθ erf(ξ/
√

θ)
+ exp(−θ)√

πθ
+ erf

√
θ

}

− Ci exp(−ξ2/θ)

(1/m − 1)
√

r
√

πθ erf(ξ/
√

θ)

]
Cx

− Cik
′ exp(−ξ2/θ)

(1/m − 1)
√

r
√

πθ erf(ξ/
√

θ)
= 0 (34)

For m = 1, dX/dT is expressed by Eqs. (10) and (27) and
C2x = C1x (=Cx).

dX

dT
=
(

D2

1 + k′/Cx

)(
exp(−kT)√

πD2T
+
√

k

D2
erf

√
kT

)
(35)

When Eq. (31) is substituted in Eq. (35), dimensionless equa-
tion (36) is obtained:

dξ

dθ
=

√
r

2

{
exp(−θ)√

πθ
+ erf

√
θ

}(
1

1 + k′/Cx

)

=
√

r

2

{exp(−θ)/
√

πθ + erf
√

θ}
[1 + (k′/Ci){1 + √

r{√πθ erf
√

θ + exp(−θ)} erf(ξ/
√

θ)/exp(−ξ2/θ)}] (36)

The initial conditions of Eq. (36) atθ = 0 is ξ = 0. Eq. (36)
gives the curing speed of the US model for case 2 andm = 1.

3. Numerical calculations

According to the above models, one-part curing systems
can be examined using numerical calculations.

3.1. Comparison between PSS and US models for case 1
and the effect of parameters

First, the relationship between the cured depth and the
curing time is calculated using Eq. (9) in the PSS model and
using Eq. (33) in the US model form = 1.

Fig. 2 showsξ vs. θ of the PSS and US models. The
values ofξ in both models are in good agreement whenθ

is greater than 1.

3.1.1. Effect of parameter k′/Ci

The effect ofk′/Ci is shown in Fig. 3. Ifk′/Ci is increased,
dξ /dθ or the curing speed is decreased.

3.1.2. Effect of parameter r

The effect ofr is shown in Fig. 4. Ifr is increased, dξ /dθ

or the curing speed is only slightly increased whenθ andr
are less than 1. This means thatD2 slightly affects the curing
speed whenθ is less than 1.

3.1.3. Effect of parameter m

Fig. 5 compares of the PSS model’s results using Eq. (8)
and the US model’s results using Eqs. (29) and (32). Both
models are also in good agreement whenθ is greater than 1.
The effect ofm in case 1 is shown in Fig. 6. The parameter
m affectsξ andθ little but has a slight effect whenm is less
than 1 andθ is less than 1.

3.2. Comparison between PSS and US models in case 2
and effect of parameters

First, the relationship between the cured depth and the
curing time is calculated using Eq. (15) for the PSS model
and using Eq. (36) for the US model form = 1. Fig. 7
showsξ vs. θ for the PSS and US models. The values of
ξ in both models are in good agreement whenθ is greater
than 1. This relationship, shown in Fig. 7, is similar to that
for case 1 shown in Fig. 2.
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Fig. 2. Relationship betweenθ and ξ (case 1 andm = 1).

Fig. 3. Influence ofk′/Ci (case 1 andm = 1).

Fig. 4. Influence ofr (case 1 andm = 1).

Fig. 5. Relationship betweenθ and ξ (case 1 andm = 2).

Fig. 6. Influence ofm (case 1).

Fig. 7. Comparison of PSS and US (case 2 andm = 1).
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Fig. 8. Comparison of cases 1 and 2(m = 1).

3.2.1. Comparison of cases 1 and 2
Fig. 8 compares the US model in cases 1 and 2 form =

1. The curing speed for case 1 is slightly faster than that
for case 2 under the same conditions. Ifk′ ≥ Ci 
 C2x

as shown in Fig. 1, the boundary condition for case 1 by
Eq. (5a) is almost the same as that for case 2 by Eq. (10),
and the two results are almost the same especially whenθ

is greater than 1.

3.2.2. Effect of parameter m

From Eqs. (10) and (27), the US model of Eq. (37) or
dimensionless equation (38) is obtained:

dX

dT
= N

k′ + Cx

=
{

D2Cx

k′ + Cx

}

×
{

exp(−kT)√
πD2T

+
√

k

D2
erf

√
kT

}
(37)

dξ

dθ
=

√
r

2

(
1

1 + k′/Cx

){
exp(−θ)√

πθ
+ erf

√
θ

}
(38)

The initial condition of Eq. (38) atθ = 0 is ξ = 0.
The effect ofm in case 2 by Eqs. (34) and (38) is shown

in Fig. 9
. The effect ofm on θ andξ is small, but it has a slight

effect whenm is less than 1 andθ is less than 1. This result
is the same as that in case 1, as shown in Fig. 6.

3.3. Comparison between US model and Murray’s method

In order to evaluate these US models, another numerical
solution by Murray’s method [5] was applied to one-part
curing conditions (case 1 andm = 1). From Eqs. (5a), (16),
(18) and (24), the algorithm of Murray’s method (fixed space

Fig. 9. Influence ofm (case 2).

Fig. 10. Comparison between US model and Murray’s method
(k′/Ci = 2.0, r = 3.0, m = 1 and case 1).

network) was programmed, in which the partial differential
equation was converted to the difference equation. The re-
sults of this method were compared with those of the US
model equation (33) (case 1 andm = 1). Both results are
shown in Fig. 10. They are completely coincident. Thus, the
US models are mathematically adequate.

4. Illustration of the computed results

The numerical results of the PSS and US models were
compared. Ifθ is greater than 1, the results of the PSS and
US models are in good agreement. Two boundary condition
models ofm �= 1 andm = 1 were presented. All these four
cases had similar results. The influence ofr and m on the
US models were studied. Them and r values of less than
1 had a much greater influence than those withm and r
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greater than 1 for cases 1 and 2. These results show that the
rate-determining step does not depend on the conditions in
the uncured zone but on the conditions in the cured zone.

The slope ofξ andθ from the US model results are nearly
1/2 as plotted on log–log paper (Figs. 2–9).

ξ =
(

X

2

)√
k

D1
= Kθ1/2 = K(kT)1/2,

X = 2K

√
D1

k
(kT)1/2, X ∝ 2K(T )1/2

√
D1

This means thatX is proportional to the square root ofT
and D1 and does not depend on the reaction rate constant
k. Whenθ is greater than 1, the slopes of logξ and logθ
from the US and PSS models are 1/2. However, whenθ

is less than 1, the slope from the PSS models is almost
equal to 1, while the slope from the US models remains at
almost 1/2 asθ decreases. Two boundary conditions were
studied. Case 2 is more accurate than case 1 theoretically
and phenomenally. However, the two results are almost the
same according to Fig. 8. Thus, it is accurate enough to
consider mathematically case 1.

5. Comparison between experiments and models

At constant temperature and humidity, the cured depth
of the sealant was measured at specified timesT. Urethane
sealant was measured at 20◦C and RH 100%. Polysul-
fide sealant was measured at 20◦C and RH 100 and 30%.
Silicone sealant was measured at 20◦C and RH 30%. We
assumed thatCi is proportional to RH.

CiD1 was measured by moisture permeability through the
cured sealant according to the JIS Z 0208. Samples of cured
sealant were crushed and kept at constant temperature and
humidity for enough time. These samples were titrated by
Karl–Fisher’s method, andCi was observed andD1 was sep-
arated and calculated from the moisture permeability.k′ and
k were measured by supposition between actual cured depth
and curing time. These parameters are shown in Table 1
[9]. Experimental data for urethane, silicone and polysulfide
sealants [9] were compared with the PSS model equation (9)
of m = 1, r = 1 and case 1. The PSS models were accurate
enough becauseθ is more than 1 and it is not necessary to
consider the US models. Furthermore, Eq. (9) of case 1 is
accurate enough compared with Eq. (15) of case 2. We con-
sidered thatr andm are 1 in this case. Fig. 11 compares ex-
periments and models. The results show good coincidence.

Table 1
Parameters of sealants at 20◦C

k′ D1 = D2 Ci k

Urethane 12 0.73×10−5 13.5 (RH = 100%) 1.1
Polysulfide 5.6 1.55×10−5 4.6 (RH = 100%) 5.4

1.4 (RH = 30%)

Silicone 16 13.6×10−5 0.33 (RH = 30%) 643

Fig. 11. Relationship between experimentalθ and calculatedθ .

6. Discussion

Many researchers have tried to solve the moving bound-
ary problems of two phases where reactions occur instanta-
neously on the boundary face. This work solves the moving
boundary problems of two phases where in one phase dif-
fusion occurs and in the other phase a slow reaction and
diffusion occurs. One good example is a moisture-curable
one-part sealant. One phase is the cured zone (diffusion re-
gion) or the elastic solid phase, and the other phase is the
uncured zone (reaction region) or viscous fluid zone. There
are three types of representative moisture-curable one-part
elastic sealants: silicone, urethane and polysulfide sealants.
Most contain moisture-sensitive prepolymers, i.e., protective
functional groups that are bonded to the terminals of their
prepolymers and that first react with the moisture absorbed
from the atmosphere and are converted to active terminals.
These active terminals then combine with each other and are
polymerized to form the elastic rubber.

protective functional group of prepolymer+ H2O
k1→active terminals of prepolymer+ byproducts (39)

active terminals(+catalyst+ curing agents)
k2→polymerization to solid(elastic rubber)

In the other type, when the latent catalyst is converted to the
active catalyst by moisture absorbed from the atmosphere,
the prepolymer in the sealant is polymerized by this active
catalyst.

latent catalyst+ H2O
k1→active catalyst prepolymer

+active catalyst(+curing agents)
k2→polymerization to solid(elastic rubber) (40)
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Fig. 12. Comparison between PSS and US for upper limitξ0 = 0.5 (case
1 andm = 1).

If k1 � k2, the rate-determining step is the first step in
Eq. (39) or Eq. (40), and the rate of polymerization to
the solid (elastic rubber) is assumed to be proportional to
the water content or the first-order of water concentration.

The diffusion coefficient of water in the uncured zone
(viscous fluid) seems to be slightly larger than that in the
cured zone (elastic rubber), i.e.,r ≥ 1, andC2x also seems to
be slightly larger thanC1x in the cured zone (elastic rubber),
i.e., m ≥ 1.

Hitherto models were calculated under the condition of
C2 = 0 at x2 = ∞. Usually, x2 is limited and assumed
to be L. Under these conditions, the results of the numer-
ical calculation (Appendix B) with Eqs. (B.2), (B.3) and
(B.8)–(B.10) are shown in Fig. 12, where the upper limit
ξ0 is 0.5. Whenθ is greaterthan 1, the PSS and US mod-

Fig. 13. Comparison between PSS with and without Danckwerts’ condition
(k′/Ci = 2, r = 3, m = 2 and case 1).

els with the upper limit are also in good agreement. Of
course, asξ approaches the upper limitξ0, or more thanξ0,
the results of the US model in the semi-infinite condition
and those of the US and PSS models in the finite condition
diverge.

The experimental results and the PSS model results were
compared. The experimental and the PSS model results co-
incided experimentally and theoretically. The PSS models
of case 1 with and without Danckwerts’ condition equa-
tion (23) were solved (Appendix C). The two results are the
same, as shown in Fig. 13.ξ (DPSS) andξ (PSS) meanξ
of PSS with and without Dackwerts’ condition. Thus, it is
unnecessary to consider the PSS model with Danckwerts’
condition equation (23).

This paper studied the kinetics of the one-part curing sys-
tem. However, the kinetics of these phenomena of the slow
oxidation reaction of metals in air or the degradation of a
polymer by oxygen and UV or�-radiation can be similarly
analyzed from this method.

7. Conclusions

The curing speed of a moisture-curable one-part sealant
is attributed to the moving boundary problems of mass
transfer and the reaction. PSS and US models were studied.
These models were expressed by dimensionless equations
ξ andθ with only three dimensionless parameters:r, k′/Ci

and m. The PSS models, which are easy to calculate, and
US models with two boundary conditions andm = 1 and
m �= 1 were compared. All four cases had similar results.
When θ is greater than 1, the PSS and US results were
in good agreement. The influence of the parameters were
evaluated. The effect ofk′/Ci on the curing speed was
very significant, but the effects ofm and r were small.
Values ofm and r of less than 1 had a slightly greater ef-
fect than those greater than 1. These results show that the
rate-determining step of the curing speed depends on the
cured zone’s condition but does not depend on the uncured
zone’s condition. The moisture-curable one-part sealant
usually cures atθ = kT, which is grater than 1 because
k is greater than 1.0 per day andT is greater than 1 day.
Two boundary conditions were studied. Case 2 was more
accurate than case 1 on the basis of theoretical and physical
phenomena. The curing speed in case 2 was slightly slower
than in case 1. However, the results for both conditions
were almost the same, especially whenθ was greater than
1. Thus, case 1 is accurate enough to study this phenom-
ena. In designing these sealants, we can calculate or use
the PSS model of case 1 with sufficient accuracy. The PSS
model with the finite distance condition also agreed with
the US model with the finite distance condition, whenθ was
greater than 1. The numerical method by Murray was ap-
plied to this one-part curing system and its results coincided
with those by our US model. Thus, US models are adequate
mathematically.
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We studied the slow reaction system with moving bound-
ary conditions mathematically and experimentally. Exact so-
lutions (US models) suggested that even the slow reaction
system with moving boundary conditions can be approxi-
mated by simple PSS solutions (PSS models) in the limited
condition whereθ is greater than 1. Experimental results
supported these models.

These presented models can also be applied to the kinetics
of similar phenomena such as slow oxidation reactions of
metals in air or the degradation of a polymer by oxygen and
UV or �-radiation.
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Appendix A. Boundary condition for case 2

Eq. (A.1) is obtained from the definition ofN2:

∂N2

∂x2
= −D2

∂2C2

∂x2
2

(A.1)

From Eq. (A.1), Eq. (A.2) is given in the uncured zone:

∂C2

∂t
= D2

∂2C2

∂x2
2

− kC2 = −∂N2

∂x2
− Rc (A.2)

Eq. (A.2) is integrated from 0 to the curing timeT:

∫ T

0

∂C2

∂t

∣∣∣∣
x2=X

dt

= −
∫ T

0

∂N2

∂x2

∣∣∣∣
x2=X

dt −
∫ T

0
Rc|x2=X dt (A.3)

∫ T

0

∂C2

∂t

∣∣∣∣
x2=X

dt = C2x − 0 = Cx (A.4)

∫ T

0
Rc|x2=X dt = k′ (A.5)

We postulate that, after the total flux fromt = 0 to T at
any uncured face has reached the specified value, its face
changes from the uncured region to the cured region and
its specified value is constant wherever this face is located.
Eq. (A.6) is expressed from this definition:

Q(T (X)) =
∫ T

0
N2|x2=X dt (A.6)

Q(T(X)) is differentiated byX and its derivative is zero

from the definition ofQ(X(T)):

dQ

dX
= ∂Q

∂T

dT

dX
+ ∂Q

∂X

= N2|x2=X

dT

dX
+
∫ T

0

∂N2

∂x2

∣∣∣∣
x2=X

dt = 0,

∫ T

0

∂N2

∂x2

∣∣∣∣
x2=X

dt = −N2(X)
dT

dX
(A.7)

From Eqs. (A.3)–(A.5) and (A.7), Eq. (10) is expressed.

Appendix B. Finite distance condition

First, we consider PSS models of not semi-infinite but
finite distanceL.

From Eq. (2) and the following B.C., Eq. (B.1) is obtained:
At B.C. x = 0, C2 = Cx andx = L, dC2/dx = 0,

N = −D2

(
dC2

dx

)∣∣∣∣
x=0

β
√

kD2C2x (B.1)

Here,β is defined by Eq. (B.2):

β = exp{(L − X)
√

k/D2} − exp{−(L − X)
√

k/D2}
exp{(L − x)

√
k/D2} + exp{−(L − X)

√
k/D2}

= 1 − exp{−(4/
√

r)(ξ0 − ξ)}
1 + exp{−(4/

√
r)(ξ0 − ξ)} (B.2)

The dimensionless PSS equation in the finite condition of
case 1 is expressed by Eq. (B.3):

dξ

dθ
= 1

2(k′/Ci){2ξ + (1/β
√

r)} (B.3)

B.C. θ = 0, ξ = 0

If β = 1, Eq. (B.3) coincides with Eq. (9) by integration.
Next, the US model of the finite conditionL of case 1 is

studied.
From Eq. (19) and B.C. ofx2 = X, C2(S) = Cx/S and

x2 = L, dC2(S)/dx2 = 0, Eq. (B.4) is given.Cx depends
only onX andT and does not depend ont. Thus, the Laplace
transformation oft on Cx is Cx /S.

C2(S) =
(

Cx

S

)[
exp{−√

(S + k)/D2(x2 − X)}
1 + exp{−2

√
(S + k)/D2(L − X)}

+ exp{√(S + k)/D2(x2 − X)}
1 + exp{2√

(S + k)/D2(L − X)}
]

(B.4)

Eq. (B.4) is differentiated byx2 andx2 = X is introduced.

dC2(S)

dx2

∣∣∣∣
x2=X

=
(

−Cx

S

)

×
{ √

(S + k)/D2

1 + exp(−2
√

(S + k)/D2(L − X))

−
√

(S + k)/D2

1 + exp(2
√

(S + k)/D2(L − X))

}
(B.5)
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Eq. (B.5) is expanded by the Taylor’s series:

dC2(S)

dx2

∣∣∣∣
x2=X

= Cx

S

√
S+k

D2

{ ∞∑
n=0

(
(−1)n exp

(
−2n

√
S+k

D2
(L−X)

))

−(−1)n exp

(
−2(n + 1)

√
S + k

D2
(L − X)

)}
(B.6)

N2x(S) = −D2
dC2(S)

dx2

∣∣∣∣
x2=X

= −
√

D2

S
Cx

√
S + k + 2

√
D2Cx

√
S + k

S

∞∑
n=1

(−1)n

×exp

(−2n(L − X)√
D2

√
S + k

)

The inverse Laplace transformation of the above equation is
expressed by Eq. (B.7):

N2(x = X) = Cx

√
D2k

{
erf

√
θ +

(
1√
πθ

)
exp(−θ)

}

+Cx

√
D2k

∞∑
n=1

(−1)n
{

2
1

(πθ)1/2

×exp

(
−4n2η2

rθ

)
+ exp

(
− 4nη√

r + θ

)

×erfc

(
2nη√

rθ
−

√
θ

)
− exp

(
4nη√
r + θ

)

× erfc

(
2nη√

rθ
+

√
θ

)}
(B.7)

In Eq. (B.7),η is defined by((L − X)/2)
√

k/01.
From Eqs. (5a), (26) and (B.7), firstCx /Ci is obtained

and the dimensionless equation of dη/dθ is expressed by
Eqs. (B.8)–(B.10):

dη

dθ
= − (1 − Cx/Ci) exp{−(ξ0 − η)2/θ}

2(k′/Ci)
√

πθ erf(ξ0 − η)/
√

θ
(B.8)

Cx

Ci

= exp(−(ξ0 − η)2/θ)

exp{−(ξ0 − η)2/θ} + √
r{(erf

√
θ)

√
πθ + exp(−θ)}

×erf(θ{(ξ0 − η)/
√

θ} + R (B.9)

R = √
r exp(−θ)

∞∑
n=1

(−1)n
{

2 exp

(
−4n2η

rθ

)
erf

(
ξ0 − η√

θ

)

+
√

πθ erf

(
ξ0 − η√

θ

)
exp

(
−4nη√

r
+ θ

)

×erfc

(
2nη√

rθ
−

√
θ

)
− exp

(
−4nη√

r
+ θ

)

× erfc

(
2nη√

rθ
+

√
θ

)}
(B.10)

Appendix C. PSS models with Danckwerts’ conditions

From Eqs. (3) and (5), Eq. (C.1) is obtained:

dX

dT
=
(√

kD2

k′

)
C2x (C.1)

Dimensionless equation (C.1) is given by Eq. (C.2):

dξ

dθ
=
(√

r

2

)(
C2x

k′

)
(C.2)

From Eqs. (1), (3), (23) and (C.1), Eq. (C.3) is obtained:

√
kD2

(
1

m
− 1

)(
C2x

k′

)2

+
(

D1

mX
+
√

kD2

)(
C2x

k′

)

−
(

D1

X

)(
Ci

k′

)
= 0 (C.3)

From Eq. (C.3), (C2x /k′) is calculated and its value is intro-
duced in Eq. (C.2). Eq. (C.2) is the curing speed of the PSS
model with Danckwerts’ condition.
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